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Reinforcement learning theory powerfully characterizes how we
learn to benefit ourselves. In this theory, prediction errors—the dif-
ference between a predicted and actual outcome of a choice—drive
learning. However, we do not operate in a social vacuum. To behave
prosocially we must learn the consequences of our actions for other
people. Empathy, the ability to vicariously experience and understand
the affect of others, is hypothesized to be a critical facilitator of
prosocial behaviors, but the link between empathy and prosocial be-
havior is still unclear. During functional magnetic resonance imaging
(fMRI) participants chose between different stimuli that were proba-
bilistically associated with rewards for themselves (self), another per-
son (prosocial), or no one (control). Using computational modeling,
we show that people can learn to obtain rewards for others but do so
more slowly than when learning to obtain rewards for themselves.
fMRI revealed that activity in a posterior portion of the subgenual
anterior cingulate cortex/basal forebrain (sgACC) drives learning only
when we are acting in a prosocial context and signals a prosocial
prediction error conforming to classical principles of reinforcement
learning theory. However, there is also substantial variability in
the neural and behavioral efficiency of prosocial learning, which is
predicted by trait empathy. More empathic people learn more quickly
when benefitting others, and their sgACC response is the most selec-
tive for prosocial learning. We thus reveal a computational mecha-
nism driving prosocial learning in humans. This framework could
provide insights into atypical prosocial behavior in those with disor-
ders of social cognition.
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Prosocial behaviors, namely, social behaviors or actions
intended to benefit others, are a fundamental but poorly un-

derstood aspect of social interaction (1). To behave prosocially,
animals need to learn about the consequences that their actions can
have for others. In reinforcement learning theory (RLT), prediction
errors (PEs)—differences between expected and actual outcomes—
drive learning (2). RLT provides a powerful framework for un-
derstanding how animals learn to obtain rewards for themselves (3).
However, the processes by which animals learn to make choices that
benefit others are unknown. Here we use RLT to characterize
prosocial learning, combining functional magnetic resonance im-
aging (fMRI) and detailed computational modeling of behavior.
Studies using economic games, moral judgments, or charity do-

nation tasks have consistently reported activity in the ventral striatum,
posterior regions of the subgenual cingulate cortex/basal forebrain
(hereinafter referred to as sgACC), dorsal anterior cingulate
cortex (dACC), and dorsolateral prefrontal cortex (DLPFC)
during prosocial behavior (4–7). Each of these regions receives input
from midbrain dopaminergic neurons (8), and these cortical regions
all project to the ventral striatum (9–11). There is substantive evi-
dence that dopamine neurons projecting to this circuit code PEs for
rewards delivered to animals (and humans) themselves (3).
The ventral striatum, sgACC, dACC, and DLPFC are also

implicated in processing information about rewards others will
receive (12–16), PEs when interacting with others (13, 17–19), and

prosocial behavior (e.g., refs. 4–7 for reviews). Therefore, infor-
mation processing in these regions may conform to RLT principles
during social interactions. However, no prior work has examined
how we learn to make choices that benefit others, a fundamental
aspect of behaving prosocially. Do any of these areas signal a
unique prosocial PE specifically when learning to benefit another?
Or is learning to benefit another encoded in regions that signal
PEs regardless of the beneficiary?
Moreover, although humans have a remarkable inclination to

engage in prosocial behaviors, there are also substantial individual
differences (1, 20–22). Empathy, the capacity to vicariously experi-
ence and understand the affect of others (23–27), has been hy-
pothesized to be a critical motivator of prosocial behaviors (25–28).
Previous studies have consistently shown that empathy can modu-
late neural responses to viewing others’ pain (29) and viewing de-
sirable outcomes (rewards) that will be delivered to others (15, 30).
Moreover, although empathy can be broken down into separable
components associated with different social behaviors and traits (23,
31, 32), studies have suggested that both cognitive and affective
aspects of empathic processing may motivate prosocial behaviors
(33). Despite this body of research, the mechanistic link between
empathy and prosocial learning remains unknown. If empathy is
indeed linked to prosocial behavior, we might predict that empathy
and prosocial learning would be associated, with those higher in
empathy learning more quickly to benefit others.
Participants (n = 31) performed a reinforcement learning task

during fMRI. On each trial participants were required to choose
between one of two symbols. One symbol was associated with a high
probability (75%) and one was associated with a low probability
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(25%) of a reward. These contingencies were not instructed but had
to be learned through trial and error. Critically, participants
performed this task for themselves (self), for another person
(prosocial), or in a control condition with no beneficiary (no one)
(Fig. 1A). The no one condition was crucial to account for pre-
vious studies showing fictive reward or fictive prediction error
brain responses, which occur when rewards are not delivered to
ourselves in entirely nonsocial situations (34–36). This condition
also allowed us to test for regions that showed relative specificity
for processing social information, that is, regions that did not re-
spond to self or nonself information (see also ref. 37 for
a recent discussion).
Using an RLT framework, we then conducted detailed computa-

tional modeling of trial-by-trial variation of behavior, supported by
Bayesian model comparison, to examine whether people were able to
learn to benefit others at the same rate that they learned to benefit
themselves. We examined whether activity in brain areas previously
implicated in coding PEs for ourselves or in prosocial behavior
signaled PEs regardless of the beneficiary that received the outcome
or whether any of these regions exclusively reflected a prosocial
PE when learning to benefit another [ventral striatum; sgACC
(Brodmann Area (BA) 25/s24); dACC (BA24); and DLPFC (BA9/
46d); Experimental Procedures and SI Experimental Procedures].
Moreover, we hypothesized that if empathy motivates prosocial be-
havior, then the rate at which people can learn to obtain rewards for
others and the neural signatures that underpin prosocial learning
should vary with trait levels of empathy.

Results
Behavioral Differences in Learning to Obtain Rewards for Self, Another
Person, or No One. Participants were able to learn to obtain rewards
for themselves, the other person, and no one, performing significantly
above chance in all conditions (all t values > 9.1, all p values < 0.001,
all degrees of freedom = 30; Fig. 1B and Fig. S1). Bayesian model
comparison revealed that participants’ choices were best character-
ized by a model with separate learning rates and choice variability
parameters in each condition [winning model evidence (ΔBIC) >
600; see also SI Experimental Procedures and Fig. S2]. Comparing the
learning rate parameters between conditions revealed a main effect
of learning condition [F(2,60) = 11.47, P < 0.001]. Participants
learned more slowly if they were obtaining rewards for another
person (prosocial) (d = 0.87, P < 0.001) or no one (d = 0.53, P =
0.01) than if they were obtaining rewards for themselves (Fig. 1C).

There was no difference in learning rate between the prosocial and
no one conditions (d = 0.25, P = 0.18). Choice variability [main effect
of condition: F(2,60) = 7.87, P < 0.001] could not explain these re-
sults because participants had similar consistency scores when
choosing for themselves and the other person (d = 0.24, P = 0.20) but
were more random when choosing for no one compared with
themselves (d = 0.46, P = 0.017) and the other person (d = 0.58, P =
0.003) (Fig. 1E). Together, these findings suggest that people have a
self-bias in their learning, learning more quickly about rewards for
themselves compared with for another person or no one. However,
people are similarly variable when choosing for themselves and
others and most variable when no beneficiary will receive the reward.

Identifying Common and Distinct Coding of Prosocial Prediction Errors
Using Functional Imaging.Using concurrently collected fMRI data, we
next examined activity corresponding to the magnitude of PEs, time-
locked to choice outcome and modeled independently of choice-
related activity (Experimental Procedures). To identify common
coding of self, prosocial, and no one PEs we first used a stringent
conjunction-null analysis (38) (for main effects, see Tables S1 and
S2; for categorical analyses of the outcome, see Table S3). Only
responses bilaterally in ventral striatum, a region consistently shown
to encode rewards delivered to self and others (39, 40), covaried with
PEs in all three conditions (MNI coordinates [x = 10, y = 15, z = −9],
Z = 4.09, k = 91, P = 0.006 voxel-level small-volume family-wise
error corrected (SVC-FWE), and [x = −12, y = 10, z = −11], Z =
3.72, k = 78, P = 0.023 SVC-FWE; Fig. 2 A–C). Responses in each
learning condition were significantly greater than 0 (all Z > 3.72, P <
0.05 SVC-FWE; Fig. S3). The ventral striatum therefore signaled
PEs regardless of the beneficiary.
We then identified regions that responded to prosocial PEs ex-

clusively by contrasting the prosocial condition against the combined
self and no one conditions. The sgACC was the only region to spe-
cifically respond to prosocial PEs ([x = −2, y = 4, z = −15], Z = 3.83,
k = 148, P = 0.019 SVC-FWE; Fig. 3 A–C), and only parameter
estimates for prosocial PEs were greater than 0 (Z = 4.95, P < 0.001,
SVC-FWE). The sgACC therefore uniquely signaled PEs when
learning to benefit another.
We also tested for regions that showed greater responses to self/

no one than prosocial PEs. Both left ([x = −36, y = 18, z = 43], Z =
4.47, k = 62, P = 0.006 SVC-FWE) and right ([x = 32, y = 15, z = 39],
Z = 4.36, k = 27, P < 0.020 SVC-FWE) DLPFC showed this pattern.
We did not observe significant responses in the dACC for any
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Fig. 1. Behavioral task and data. (A) Participants
performed a reinforcement learning task in which they
had to learn the probability that abstract symbols were
rewarded. At the beginning of each block, participants
were told whom they were playing for, either them-
selves, for the other participant, or in a condition
where no one received the outcome. (B) Group-level
learning curves showing choice behavior in the three
learning conditions. Trials are averaged over the three
blocks (48 trials total per condition, 16 trials per block)
for the self, prosocial, and no one conditions. Dotted
line shows chance level. (C) Comparison of learning
rates (α) from the computational model. Participants
had a significantly higher learning rate when learning
in the self compared with the prosocial and no one
conditions. (D) Individual differences in empathy (online
simulation) modulated the prosocial vs. self learning
rate difference, with those higher in empathy having a
more similar learning rate between the prosocial and
self conditions. (E) Participants were less consistent
(higher β) when choosing for no one compared with
choosing in the self and prosocial conditions. Asterisks
represent significant differences (P < 0.05).
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contrast. All significant results remained when comparing the self
condition only to the prosocial condition (see Table S4).

Mechanistic Links Between Empathy and Prosocial Learning. Next we
tested whether individuals higher in empathy learned at a similar rate
to obtain rewards for others compared with themselves and whether
variability in empathy modulated neural responses to prosocial PEs.
Consistent with our predictions, we found that the online simulation
subscale of the Questionnaire of Cognitive and Affective Empathy
(41), a validated and psychometrically rigorous measure of trait
empathy that probes the tendency to imagine how other people will
feel (SI Experimental Procedures), was positively associated with the
learning rate for the prosocial condition, relative to the self (to
control for individual differences in learning per se) condition (r =
0.44, P = 0.01, 95% CI = 0.18, 0.66; Fig. 1D and Table S5). We then
tested whether the online simulation subscale also predicted neural
responses to prosocial PEs. Online simulation was also positively
associated with prosocial (compared with self) PE responses in the
sgACC (r = 0.39, P = 0.03, 95% CI = 0.13, 0.60; Fig. 3D), with those
higher in online simulation showing greater sgACC specificity to
prosocial relative to self PEs. Together these findings suggest that
there are both behavioral and neural links between empathy and
prosocial behavior.

Discussion
RLT has provided important insights into how we learn about re-
warding information for ourselves. Here we used the RLT framework
to characterize prosocial learning and its underlying computational
and neural basis. We found that the ventral striatum commonly
coded PEs in all conditions, responding to PEs for self, another
person, and no one. In contrast, the sgACC coded PE signals
specifically when learning to benefit another. We also observed
substantial variability in prosocial learning with differences in both
neural and behavioral responses predicted by trait empathy.
Our findings advance theoretical accounts of the neural basis of

social behavior by finding evidence for both common coding and
socially specific regions of the brain underpinning prosocial behavior
(4–7, 42). PE signals in the ventral striatum, which is extensively

connected with the sgACC (9), were evident regardless of the con-
text of learning. This finding cannot be easily accommodated within
current theories of ventral striatum contributions to learning, which
suggest that this region is engaged when learning to obtain beneficial
outcomes for oneself (3). Moreover, this finding adds to and extends
existing studies of the role of the ventral striatum in social behavior.
Consistent with previous research, we find ventral striatum responses
to rewards delivered to both self and other (39, 40). However, we
also find that these signals are evident even when no one receives a
rewarding outcome. The ventral striatum may therefore be impor-
tant for learning in many contexts even when a reward is not
obtained or consumed by anyone. The profile of response in the
ventral striatum (VS) differs from the sgACC, which shows speci-
ficity for signaling PEs when learning to benefit another. Thus, al-
though both regions may play a role in driving prosocial behavior,
the function of ventral striatum may be more domain general than
that of sgACC, which we speculate may compute a prediction error
specifically for outcomes delivered to others.
The sgACC region we identified as responding exclusively to

prosocial PEs overlapped with a septal-anterior hypothalamic area
that is part of the basal forebrain (43). Recent studies of sgACC
function have found signals in this region relevant for social cog-
nition and behavior including credit assignment (44), prosocial
and moral behavior (6, 16, 45, 46), the experience of positive affect
(47), trust (48), social emotion (49), and vicarious reward (50, 51).
Moreover, there is evidence that the sgACC may signal PEs for
self-reward but only when learning occurs at a specific level of
abstraction beyond basic stimulus–response association (52). One
possible explanation for this convergence is that similar abstract
learning mechanisms may drive how we learn to benefit others and
that both are underpinned by RLT principles. Further studies
could compare tasks that manipulate both the social and the hi-
erarchical context of a learning environment to directly test the
parallels between these types of learning. In addition, future re-
search should aim to dissociate the functions of the heterogeneous
cortical and subcortical structures of the sgACC complex, using
high-resolution fMRI, to understand which of these subregions
contribute to social cognition and prosocial learning.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pa
ra

m
et

er
 

es
tim

at
es

: r
ig

ht
 V

S

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pa
ra

m
et

er
 

es
tim

at
es

: l
ef

t V
S

A CB

Self 
PE

Prosocial 
PE

No one 
PE

Self 
PE

Prosocial 
PE

No one 
PE

Fig. 2. fMRI data, common coding of prediction errors. (A and C) Ventral striatum responses to PEs regardless of the agent the outcome was received by.
(B) Overlay of ventral striatum response. All images displayed at P < 0.001 uncorrected. Peak voxels all survive P < 0.05 FWE-SVC (see Fig. S3).

-4

-2

0

2

4

6

8

15 25 35

P
ar

am
et

er
 e

st
im

at
es

: 
P

ro
so

ci
al

 P
E

 –
S

el
f 

P
E

 in
sg

A
C

C

Empathy score

A
r = .39
p = .03

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

P
ar

am
et

er
 e

st
im

at
es

: 
sg

A
C

C

Self PE

Prosocial 
PE

No one PE

CB

Fig. 3. fMRI data, distinct coding of prosocial prediction errors. (A) Subgenual anterior cingulate cortex (sgACC) responses to PEs when learning to benefit
another person. (B) Overlay of sgACC response (green) and VS response (yellow). Image displayed at P < 0.001 uncorrected, and all peak voxels survive P < 0.05
FWE-SVC. Crucially, the sgACC region in which activity covaried with prosocial PEs did not overlap with the ventral striatum clusters. (C) sgACC response was
modulated by individual differences in empathy (online simulation).

Lockwood et al. PNAS | August 30, 2016 | vol. 113 | no. 35 | 9765

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
9,

 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603198113/-/DCSupplemental/pnas.201603198SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603198113/-/DCSupplemental/pnas.201603198SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603198113/-/DCSupplemental/pnas.201603198SI.pdf?targetid=nameddest=ST5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603198113/-/DCSupplemental/pnas.201603198SI.pdf?targetid=nameddest=SF3


www.manaraa.com

We did not observe responses in anterior insula or dACC in any of
our contrasts. This may seem surprising given that these regions have
previously been implicated in empathy and/or social behavior (15, 29,
30, 37). Although it is difficult to interpret a null finding, because
there can be a number of reasons that a particular neural response is
not observed, we note that in this experiment, participants were
performing their task in a different reference frame (see refs. 53 and
54 for recent discussions of the role of references frames in studies of
social cognition) compared with other studies measuring empathic/
vicarious processing. In our task, participants were making choices
for another person, not only observing events that happened to
others. In other words, in our task, decisions were made in a self-
action reference frame. Studies that compare different reference
frames in the same paradigm could help shed light on the functional
roles of specific brain areas during empathy and prosocial behavior.
An important aim of our study was to explain what might drive

variability in prosocial learning (1, 20–22). We identify evidence of a
mechanism linking variability in empathy to variability in prosocial
behavior, with highly empathic individuals having an increased
learning rate, and stronger sgACC PE signals, for other people’s
rewards. Many accounts of empathy have argued for a crucial role of
empathy in the development of prosocial and moral behavior and
the inhibition of aggression (25, 27, 55–58). Our demonstration that
empathy is associated with a higher rate of learning about actions
that result in beneficial outcomes for other people as well as the
neural drivers of prosocial learning suggests a computational link by
which empathy could influence the development of prosocial and
moral behaviors. Enhanced PE signaling and faster learning when
benefitting others also provide a potential explanation for reports of
individuals higher in empathy being more motivated to behave
in a prosocial manner compared with those lower in empathy
(21). Moreover, our results support an emerging view that PE
signals may be crucial for learning how to interact, and empa-
thize, with others (59). Twin data indicate substantial heritability
of prosociality across development (60, 61). Longitudinal de-
velopmental investigations, particularly ones that are able to tease
apart genetic and environmental contributions to brain function
(e.g., twin studies), would be helpful in determining the degree to
which the specificity of sgACC activity during prosocial learning
reflects an endophenotype for prosocial behavior.
An influential theory within the literature on empathy is that we

empathize with others by a process of (embodied) simulation (62).
This view is largely driven by studies that show a degree of overlap
in the neural responses to self and other pain, particularly in an-
terior insula and dACC (reviewed in refs. 29 and 30), and for
pleasant touch (63). Other studies have also supported a simulationist
view of empathy by exploiting the placebo analgesia effect, showing
that placebo analgesia changes self pain as well as vicarious pain (64,
65). Although these studies are consistent with a simulationist ac-
count, it remains possible that there exist additional processes that do
not operate through self–other overlap that participate in the expe-
rience of empathy (15, 30). For example, studies have suggested that
other neurocognitive processes, in addition to simulation, may be
important when processing vicarious information, particularly in the
domain of positive affect (see ref. 51 for a metaanalysis and ref. 30 for
review). In the present study we observed that PE responses in the
sgACC were present only when learning to benefit another person
and not when learning to benefit oneself or no one (including the
latter to control for fictive PE signals), suggesting that a socially
specific signal is important for prosocial learning in this context. We
also observed that those who self-report that they simulate most
readily also have the most specific signals related to prosocial
learning in the sgACC. This points to the intriguing possibility that
simulation at the level of self-report may not necessarily be encoded
in brain areas that respond to both self and other during learning. It
should be noted that given potential gender differences in empathy
and prosocial behavior (e.g., ref. 66) our sample in this study was
composed only of males. Future studies would benefit from also
examining prosocial learning in females.
Prosocial behaviors are fundamental for promoting social bonds

and cohesion (1, 55, 67) and are disrupted in a number of psychiatric

and neurological disorders (23, 68–70). Using the framework of
RLT to understand how we learn to make decisions that benefit
other people could offer insights into why these disorders are
associated with atypical prosocial behavior and empathy. Taken to-
gether, our findings reveal a computational link between prosocial
learning and empathy in humans and therefore pave the way to
characterize atypical prosocial interactions in those with disorders of
social cognition and behavior.

Experimental Procedures
Participants. Thirty-four right-handed healthy males (age 19–32, M = 22.7,
SD = 3.0) were recruited through university participant databases. Exclusion
criteria included previous or current neurological or psychiatric disorder,
nonnormal or noncorrected to normal vision, nonnative English language, and
previous or current study of psychology. Three participants were excluded
from the analysis [two due to performance at chance level (∼50%) in all
learning conditions and one due to neurological abnormalities evident on the
MRI scan], leaving a final sample of 31. With 31 subjects we had 80% power to
detect a medium effect size of d = 0.52 at alpha = 0.05 (two-tailed), an effect
size smaller than typically reported in this field, indicating sufficient power. All
participants gave written informed consent, and the study was approved by
the University College London Research Ethics Committee.

Experimental Task. We examined BOLD signals that scaled parametrically with
the size of a PEat the timeof an outcomedelivered to self, another person (here a
confederate–prosocial condition), or no one. Participants performed a probabi-
listic reinforcement learning task where they were required to learn the prob-
ability that each of two symbols would be rewarded. One symbol of each pair
was associated with a high probability (75%) and one was associated with a low
probability (25%) of reward. Participants performed this task in three different
learning contexts: self, prosocial, and no one. Participants were instructed that
when they were playing for themselves they would receive any money they
won. Crucially, when they were playing for the confederate, that participant
would receive the money (see SI Experimental Procedures for full instructions
given to participants). When they were playing for no one, the points they saw
would not be converted into any additional payment, either for themselves or
the other participant. Participants were informed that the other participant was
not aware that they were performing a task where they could earn extra money
and that any money they won would be given to the other participant anony-
mously (i.e., it would be placed in a sealed envelope and the two participants
would leave the scanning center at different times).

Self blocks began with the instruction “play for you” and had the word
“you”written above all choice symbols and outcomes. Prosocial blocks had the
name of the confederate participant written above them. No one blocks had
the words “no one” written above elements in a trial. This ensured that
participants were explicitly aware whether the decisions they made resulted in
outcomes for themselves, for the other participant, or for no one (for trial
structure and order, see SI Experimental Procedures and Fig. 1A). Participants
practiced one block (16 trials) of the task in a separate session ∼7 d before the
scanning session to familiarize them with the experimental task. During this
practice they were instructed that the outcomes would not be converted into
any payment.

Procedure. Participants were paired with one of two age- and gender-matched
confederates whom they believed were naïve participants and had never met
before the experiment. The confederates were trained in acting as naïve par-
ticipants during a pilot experiment. Participants attended two sessions. The first
session was attended only by the experimental participant and involved prac-
ticing the experimental task and completing questionnaires. This was done due
to scheduling considerations and so that participants could practice the learning
task on their ownwithout the confederate present. The second session (<7 d later)
was attended by both the experimental participant and the confederate. The
participant and confederate were taken together to the MRI center and filled in
consent forms together in the same room. The confederate was then led into a
behavioral testing room and instructed to complete questionnaires, with the
experimental participant within earshot of this interaction to increase belief in
the deception. The experimental participant was taken to the scanning room
and reminded of the instructions for the task, with the confederate participant
unable to overhear this interaction to ensure that the experimental participants’
choices remained anonymous. Participants were told that they would view a pair
of symbols on each trial and that they should select one of them. They would
receive points for some of their choices that would be converted into money at
the end of the experiment, such that the more points they received, the more
extra money they would earn. They were instructed that the two symbols would
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not be the same in terms of how often they gave points, and with some symbols
they were more likely to win points than with other symbols. Whether the
symbols appeared on the left or right did not affect their meaning.

Participants were instructed that they would receive extra payment based
on the outcomes they received during the experimental task, but in fact, all
participants were paid the same amount due to ethical restrictions (total £30,
representing an additional £7 to the standard participant payment for the
required time commitment). They also believed that the confederate par-
ticipant could earn an extra payment based on the choices the experimental
participant made during the task. A set of standardized questions completed
after the scan confirmed that no participant had become suspicious about
the deception during the experiment (see SI Experimental Procedures).

Computational Modeling of Behavioral Data. Learning behavior in the self,
prosocial, and no one conditionswasmodeled using a reinforcement learning
(RL) algorithm (2), which has been extensively used to examine the behav-
ioral and neural basis of arbitrary visuomotor associations in both self and
social contexts (13, 17–19). The RL model assumes that the associative value
of an action (or stimulus) changes when new information reveals that the
actual outcome of a decision is different from the expected outcome (2).
Thus, on each trial t, an action a has an expected associative value Qt(a) that
is updated by the mismatch between experienced and expected outcome on
the current trial (the PE). At their most simple, RL algorithms state that ex-
pectations of future reward for action a, Qt+1(a), should be a function of
current expectations Qt(a) and the discrepancy between the actual reward
that has just been experienced on this trial rt (coded as 1 or 0 for reward or
no reward, respectively) and the expected reward for this trial t, Qt(a). The
degree to which this discrepancy updates the expectation is scaled by the
learning rate α (bounded between 0 and 1), such that

Qt+1ðaÞ=QtðaÞ+ α× ½rt −QtðaÞ�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Prediction    Error

.

The learning rate α controls the extent to which the current expected value is
updated by new information. Consequently, a low learning rate will minimize
the influence of the prediction error and the amount that the value is updated.
The probability that a subject chooses action a on trial t, given the expected
values of the available actions Qt(a), is given by the softmax link function

pt ½ajQtðaÞ�= e½Qt ðaÞ=β�
P

a′e
½Qt ða′Þ=β�.

The temperature parameter β controls the amount of exploration or noisiness
for that participant (i.e., extent to which the subject decides to choose the most
rewarding option vs. exploring potentially more rewarding actions). The softmax
link function estimates the trial-by-trial probability of each action by weighting
the ratio of expected values by the temperature parameter. In this framework,
a high temperature parameter β would lead to similar action probabilities
irrespective of the expected value of each action (resulting in random behavior).
A low β would lead to consistent behavior, where the action with the higher
expected value is invariably selected on each trial. In the full model, separate α
and β parameters were estimated for each of the self, prosocial, and no one
conditions because this provided the most parsimonious explanation for the
behavioral data (see SI Experimental Procedures for details of model fitting and
model comparison and Fig. S2).

Statistical Analysis of Behavioral Data. Analyses of behavioral data were
performed in SPSS 22 (IBM Corp.). We examined differences between conditions in
the learning rate and temperature parameters at the group level using separate
repeatedmeasures analyses of variance (ANOVAs), with three levels (self, prosocial,
and no one). Separate ANOVAs were conducted because the learning rate and
temperature parameters represent different units of measurement. We examined
bivariate associations between the prosocial–self difference in learning rate and
temperature and empathy questionnaire subscales using the Pearson correlation
coefficient. Effect sizes (Cohen’s d) were calculated by dividing the mean differ-
ence between conditions by the SD of the difference (71). Confidence intervals for
correlation coefficients were estimated using SPSS 22 Bootstrap procedure.

fMRI Acquisition and Analysis. A Siemens Avanto 1.5-T MRI scanner was used to
acquire a 5.5-min three-dimensional T1-weighted structural scan and 424multislice

T2*-weighted echo planar volumes with blood oxygenation-level–dependent
(BOLD) contrast. The structural scan was acquired using a magnetization prepared
rapid gradient echo (MPRAGE) sequence with 176 slices, slice thickness = 1 mm,
gap between slices= 0.5mm, TR= 2730ms, TE= 3.57ms, field of view= 256mm ×
256 mm2, matrix size = 256 × 256, and voxel size = 1 × 1 × 1 mm resolution. The
functional imaging sequence was acquired in an ascending manner, at an oblique
angle (∼30°) to the AC–PC line to decrease the effect of susceptibility artifact in the
orbitofrontal cortex (72), and had the following acquisition parameters: 424 vol-
umes, 1 mm gap, echo time = 50 ms, repetition time = 2,975 ms, flip angle = 90°,
field of view = 192 mm, and matrix size = 64 × 64.

Imaging data were analyzed using SPM8 (www.fil.ion.ucl.ac.uk/spm). Data
preprocessing followed a standard sequence: the first four volumes and last vol-
ume were discarded. Images were then realigned and coregistered to the par-
ticipant’s own anatomical image. The anatomical image was processed using a
unified segmentation procedure combining segmentation, bias correction, and
spatial normalization to theMNI template using the new segment procedure (73);
the same normalization parameters were then used to normalize the EPI images.
The voxel size was resampled to 1.5 × 1.5 × 1.5mm. Last, a Gaussian kernel of
8 mm FWHM was applied to spatially smooth the images. Before the study, ex-
ample first-level design matrices were checked to ensure that estimable GLMs
could be performed with independence between the parametric regressors
(chosen value and PE in the three conditions), with correlations coefficients of r <
0.25. This allowed us to look at PE-related responses independent of chosen value.

Eight event typeswere used to construct regressors inwhich event timingswere
convolved with SPM’s canonical hemodynamic response function. The three con-
ditions at the time of the cues and three conditions at the time of the outcome
weremodeled as separate regressors using stick functions. Each of these regressors
was associatedwith a parametricmodulator taken from the computational model.
At the time of the cue this was the chosen value, and at the time of the outcome,
the PE. The PEswere estimated using each subject’s own alpha and beta from each
condition. The instruction cue at the beginning of each block was also modeled in
a single regressor as a stick function. In some participants, an eighth regressor
modeled all missed trials, on which participants did not select one of the two
symbols in the response window. For those participants where there was visible
head motion in a particular scan (scans with >1 mm or 1° movement relative to
the next were examined visually) an extra regressor was included corresponding to
each scan. These images were removed and replaced with an image created by
interpolating the two adjacent images to prevent distortion of the between-
subjects mask (four participants, less than 1% of total time series). Six headmotion
parameters modeled the residual effects of head motion as covariates of no in-
terest. Data were high-pass filtered at 128 s to remove low-frequency drifts, and
the statistical model included an AR (1) autoregressive function to account for
autocorrelations intrinsic to the fMRI time series. Our primary analysis focused on
the PEs at outcome (for response to chosen value, see Table S1).

Contrast images from the first level were input into a second-level flexible-
factorial design with three levels (self PE, prosocial PE, and no one PE). Main
effects are reported at P < 0.05, family-wise error (FWE) corrected at the voxel
level across the whole brain, or P < 0.05 small volume corrected (SVC) at the
voxel level in regions where we had a strong a priori hypothesis (see below).

ROI Selection and fMRI Contrasts. The a priori regions of interest (ROIs) were
defined anatomically using masks taken from an appropriate atlas [bilateral VS,
sgACC, dACC, bilateral DLPFC; toolboxes: Harvard-Oxford Atlas, regions 46v and 9
(74), Anatomy Toolbox regions s24 and 25 (75), and region 24 from ref. 76 (cor-
responding to the gyral portion of the anterior cingulate cortex); see Fig. S4 and SI
Experimental Procedures for further details of ROI selection). We additionally ap-
plied a false discovery rate correction (FDR) (77), rather than Bonferroni correction
[which may be overly conservative given that our ROIs were not entirely inde-
pendent from one another, because they are functionally and anatomically
connected (9–11)], for the number of ROIs. All ROI comparisons remained sig-
nificant (P < 0.05) when controlling for the number of comparisons using FDR.
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